Instrumentation Technology INST-1010

Process Control Signals

Basile Panoutsopoulos, Ph.D. CCRI

Department of Engineering and Technology

Today's meeting

- Call Attendance

- Give examination

 Display time clock
 Collect examinations
- Previous examination
- ReturnDiscussion

- Introduce topic

 Provide Handouts

 Socratic discussion

 Practice Problems

Engineering Physics II

Process Signals

- · Process control
 - Depends on information about process variables
 - Information about process variables goes to the central control room
 - Information results in process changes sent to valves, motors, etc. to control process
- Signals represent process variables
 - Provides remote monitoring and control
 - Eliminates potentially dangerous exposure
 - Standard analog signal using
 - low pressure air, low electrical current, low electrical voltage
 See text Fig 3-1

	<u> </u>

Kinds of Signals

- Electrical
 - Analog continuous range of values
 - Digital discrete values, 1/0, on/off, true/false
- Pneumatic
 - Low air pressure

Instrumentation: Signals

Fig. 3-1. Steam line pressure vs air pressure

400

50% hput

50% hput

Air pressure, psi

Instrumentation: Signals

5

Linear and Nonlinear Transducers

- Plot of transducer's response straight line for a linear device
- Plot of transducer's response not a straight line for a nonlinear device
- See Fig 3-2 in text
- Both types are common, and can be used reliably, but not necessarily interchangeably

nstrumentation: Signals

Signal Operating Values

- Range
 - Maximum and minimum limits of measuring instrument
 - Exceeding range limits may damage instrument
- Span
 - Difference between maximum and minimum range limits
 - Device may have span adjustment
- See Fig 3-3 in text

Instrumentation: Signals

Fig. 3-3. Typical panelboard recorder-control

Fig. 3-3. Typical panelboard recorder-control

Fig. 3-3. Typical panelboard recorder-control

Main Auto September 1 September 1

Error in Signal Measurement

- · Zero Error
 - Offset in reading due to non zero initial setting
 - Lowest reading, the 0.0 reading, must be set correctly
- Span Error
 - Full range, 100% of span, not used
 - Must be set correctly,
 - Mmay interact with zero setting
- Hysteresis
 - Error resulting from delay between action and reaction of measurement. Error may be different when measuring change from above setpoint, than from below setpoint

Instrumentation: Signals

10

Error in Signal Measurement

- Deadband
 - Part of range where output doesn't change relative to change of input
 - Lack of sensitivity
 - May be a desirable characteristic
- Nonlinearity error
 - Error resulting from inherent nonlinearities of device
 - Expressed as %
 - Text page 33 examples

Instrumentation: Signals

11

Controller Output

- Final element adjusts process to bring measured variable back to setpoint
- Controller output must be compatible with final element, and should generally exceed range of final element
 - Rpm range, valve range

nstrumentation: Signals

12

Pneumatic Signal Transmission

- Standard pressure 3 to 15 psi, 0 to 100%
 - Less commonly used, but still widely used for final control element
 - Small amount of pressure for large amount of force $\mbox{\bf F} = \mbox{\bf P}/\mbox{\bf A}$

See example text page 35

- Distance limitation
 - Air travels at speed of sound, 1200 ft/sec
 - Too slow for controlling systems over distances
 - Electrical signals travel at speed of light, 984 M ft/sec

Instrumentation: Signals

13

Flapper Nozzle System

- Simple device used to control signal pressure
- Signal pressure inversely proportional to the flapper distance from nozzle, Fig 3-6

Instrumentation: Signals

Fig. 3-6. Flapper-nozzle signal pressure vs gap distance

Supply pressure

Gap distance

Instrumentation: Signals 15

-	

Electrical Signal Transmission

- Ohm's Law, V = I R, describes relationship between voltage, current, and resistance
- Power Supply
 - Source of electrical power used to provide energy for electrical components of system
 - Often used to convert ac to dc power
 - May have battery back-up
 - Should have good noise immunity
 - System cabling may use shielding to reduce noise
- Current sent between instruments and control room may use current
 - Std ranges: 4-20mA, 10-50mA, 1-5mA, 0-5mA
- Voltage ranges in instrumentation
 - Std ranges: 1-5V, 0-10V

antation: Signals

Current – Pneumatic Systems

- Typically 4-20mA current devices
- I/P device
 - 4-20mA for 3- 15psi
- P/I device
 - Inverse of above
- Direct acting, reverse acting, proportional
- See text Fig 3-7, 3-8

entation: Signals

Flagper Spring 4-20 mA

Phot Glap Pressure Spring Pressure Spring (20 pa)

Flagper Spring 4-20 mA

Pressure Spring (20 pa)

Flagper Spring (20 pa)

Flagper Spring (20 pa)

Flagper Spring (20 pa)

_	
-	
-	
_	
-	
-	
-	
-	
_	
-	
_	
-	
-	
_	
-	
-	
-	
-	

Transmission of Other Signals

- Digital Signals
 - Variety of standards for data and pulse information
 - Pulse signals typically used for frequency monitoring
- Optical Signals
 - Light, visible and invisible, used instead of current
 - Fiber optic cable used instead of wire
 - Transmitter typically an LED
 - Receiver typically a photodiode

entation: Signals

Typical Control Loops

- See Fig 3-9 for Current Loop Example
- See Fig 3-10 for Complete Control System

artrumontation: Signals

Block and Arrows

Summing Points

Instrumentation: Signals

Take-off Points

